SYNTHESIS OF SOME *p*-SUBSTITUTED ALKOXYALKYL PHENYL ETHERS*

V.JAROLÍM and F.ŠORM

Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, 166 10 Prague 6

Received September 10th, 1974

As bioanalogues of the insect juvenile hormone, several alkoxyalkyl phenyl ethers have been prepared of various number of carbon atoms in the alkoxyalkyl chain and with various substituents in the *para* position of the phenyl residue.

In connection with the preparation of the insect juvenile hormone bioanalogues containing an aromatic ring in this Institute^{1,2}, attention has been now paid to the synthesis^{**} of some *p*-substituted alkoxyalkyl phenyl ethers (some results in this respect have been reported in our patent application³).

The synthesis of compounds I - VI, VIII, IX, and XI - XIV (Table I and Scheme 1) was performed from alkoxyalkyl alcohols obtained by reduction of esters of corresponding alkoxyalkanoic acids⁴⁻⁶ or alkoxyalkyl ketones with lithium aluminium hydride. By reaction with phosphorus tribromide in the presence of pyridine or on treatment with bromine and triphenylphosphine, the alkoxyalkanols were converted to the appropriate alkoxyalkyl bromides which afforded the required phenyl ethers by reaction with *p*-substituted phenols. Compound VII was prepared analogously from diethylene glycol monomethyl ether. Saponification of the ester VIII afforded an acid which was converted to the N,N-diethylamide X via transformation to the acyl chloride and its reaction with diethylamine.

EXPERIMENTAL

The IR spectra were taken in tetrachloromethane. The gas chromatography was performed on a Pye Argon Chromatograph (radioactive ionisation detection). Column chromatography was carried out on the Pitra silica gel (produced by Service Laboratories of this Institute) partially deactivated by the addition of 12% water. Substances that were not distilled were dried for analytical purposes at $50^{\circ}C/12$ Torr for 1 h. The boiling point data refer to bath temperatures.

^{*} Part XXXI in the series Natural and Synthetic Materials with the Insect Hormone Activity; Part XXX: This Journal 41, 1235 (1976).

^{**} The biological activity of the present substances will be reported elsewhere.

Preparation of Alkoxyalkyl Alcohols

The lithium aluminium hydride reduction was performed analogously⁵ to the preparation of 5-(1,1-dimethylethoxy)-3-methyl-2-penten-1-ol and <math>5-(1,1-dimethylethoxy)-3-methyl-1-pentanol.

Compound	Formula (m.w.)	Calculated/Found				
		% C	% H	% Cl	% N	B.p., °C/Torr
I	C ₁₆ H ₂₃ ClO ₂ (282·8)	67·95 68·26	8·20 8·04	12·54 12·61		135—140 0·01
II	$C_{16}H_{25}ClO_2$ (284.8)	67·47 67·59	8·85 8·90	12·45 12·48	—	133—138 0·008
III	C ₁₄ H ₂₁ ClO ₂ (256·8)	65·48 65·36	8·24 8·23	13·81 14·04	_	110-120 0.009
IV	C ₁₇ H ₂₅ ClO ₂ (296·8)	68·79 69·09	8·49 8·57	11·95 12·03		
V	C ₂₀ H ₂₉ ClO ₂ (336·9)	71·30 71·15	8·68 8·55	10·52 10·41		150 — 160 0·008
VI	C ₁₇ H ₂₃ ClO ₂ (294·8)	69·26 68·89	7·86 7·85	12·03 12·22	-	_
VII	C ₁₁ H ₁₅ ClO ₃ (230·7)	57·27 57·31	6∙55 6∙64	15·37 15·35	_	127—135 0·009
VIII	C ₁₉ H ₂₈ O ₄ (320·4)	71·22 70·96	8·81 8·85	_		—
IX	C ₁₇ H ₂₆ O ₄ (294·4)	69·36 69·57	8·90 9·02			—
X	C ₂₁ H ₃₃ NO ₃ (347·5)	72·58 72·61	9·57 9·56		4·03 4·30	_
XI	C ₁₉ H ₂₈ O ₃ (304·4)	74·96 74·88	9·27 9·34			
XII	C ₁₉ H ₃₀ O ₃ (306·4)	74·47 74·17	9·87 9·82	_	_	_
XIII	C ₁₆ H ₂₆ O ₂ (250·4)	76-75 76-93	10·47 10·32	_	_	90-95 0·01
XIV	C ₁₆ H ₂₃ NO ₄ (293·4)	65·28 65·50	7·90 8·18	—	4·77 4·86	

TABLE I

Elemental Analyses of Compounds I-XIV

	R—O—	
	R = CH ₃	X =
7	$(CH_3)_3C-O-CH_2-CH_2-C=CH-CH_2-CH-CH-CH_2-CH-CH-CH_2-CH-CH-CH_2-CH-CH-CH-CH_2-CH-CH-CH-CH_2-CH-CH-CH-CH_2-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-CH-$	Cl
	CH3	
Π	$(CH_3)_3C-O-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2$	Cl
	CH ₃	
ΊII	$(CH_3)_3C - O - CH_2 $	Cl
	CH ₃	
IV	$(CH_3)_3C-CH_2-O-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2$	CI
	CH ₃ CH ₃	
V	$(CH_3)_2C = CH - CH_2 - CH_2$	Cl
	$\begin{array}{c} CH_3 \\ \\ \end{array} \qquad \qquad C_2H_5 \\ \\ \end{array}$	
VI	$CH_3 - CH = C - CH_2 - O - CH_2 - C = CH - CH_2 -$	Cl
VII	CH ₃ -O-CH ₂ -CH ₂ -O-CH ₂ -CH ₂ -O-	Cl
VIII	CH_3 $(CH_3)_3C-O-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2-CH_2$	-COOC ₂ H ₅
	CH ₃	
IX	$(CH_3)_3C - O - CH_2 - CH_2 - CH_2 - CH_2$	$-COOC_2H_5$
	CH ₃	
X	$(CH_3)_3C - O - CH_2 $	$-CON(C_2H_5)_2$
	CH ₃	$-CO-C_2H_5$
XI	$(CH_3)_3C - O - CH_2 $	
	CH ₃	
XII	$(CH_3)_3C - O - CH_2 $	—CO—C ₂ H ₅
VIII	CH_3	C H
лШ	$(CH_3)_3C - O - CH_2 - CH_2 - CH_3$	$-C_2H_5$
XIV	$(CH_3)_3C - O - CH_2 $	-NO ₂
_		-

SCHEME 1

p-Substituted Alkoxyalkyl Phenyl Ethers

This route was used to prepare the following alcohols. 3-[(2-methyl-2-butenyloxy)methyl]--2-penten-1-ol (b.p. $155-160^{\circ}$ C/12 Torr). For C₁₁H₂₀O₂ (184·3) calculated: 71·68% C, 10·94% H;

found: 71·49% C, 10·93% H. 5-(2,2-Dimethylpropoxy)-3-methyl-2-penten-1-ol (b.p. 130–140°C : : 18 Torr). For $C_{11}H_{22}O_2$ (186·3) calculated: 70·91% C, 11·91% H; found: 70·97% C, 11·92% H. 5-(1,5-Dimethyl-4-hexenyloxy)-3-methyl-2-penten-1-ol (b.p. 105–115°C/0·01 Torr). For $C_{14}H_{26}$. O_2 (226·3) calculated: 74·30% C, 11·58% H; found: 74·00% C, 11·36% H.

Preparation of Alkoxyalkyl Bromides

The preparation was performed analogously to that 5 of 1-bromo-5-(1,1-dimethylethoxy)-3-methyl--2-pentene and 1-bromo-5-(1,1-dimethylethoxy)-3-methylpentane.

The phosphorus tribromide-pyridine method (light petroleum as solvent) was used in the preparation of the following bromides. 1-Bromo-3-[(2-methyl-2-butenyloxy)methyl]-2-pentene (b.p. $140-145^{\circ}C/12$ Torr), 1-bromo-5-(1,1-dimethylpropoxy)-3-methyl-2-pentene,* 1-bromo-5-(1,5-dimethyl-4-hexenyloxy)-3-methyl-2-pentene,* 3-bromo-1-(1,1-dimethylethoxy)butane (b.p. $120-130^{\circ}C/30$ Torr), and (diethyl ether as solvent) 1-bromo-2-(2-methoxyethoxy)ethane (b.p. $105-110^{\circ}C/16$ Torr).

Preparation of Alkoxyalkyl Phenyl Ethers I - IX and XI - XIV

A mixture of the appropriate alkoxyalkyl bromide (50 mmol), the corresponding phenol derivative (55 mmol), and anhydrous potassium carbonate (0.4 g) in methyl ethyl ketone (10–15 ml) was refluxed for 6–16 h. The reaction course was checked by thin-layer chromatography. When the alkoxyalkyl bromide disappeared or when the composition of the reaction mixture remained constant, the reaction mixture was poured into water, extracted with ether, the ethereal extract washed with 5% aqueous sodium hydroxide, and processed as usual. The crude product was purified by chromatography on silica gel (30–50 parts by weight) with the use of the light petroleum-ether mixture (1:32 with compounds I-VI and XIII; 1:12 with compounds VIII, IX, XI, XII, and XIV; and 1:6 in the case of compound VII). Yields, 40–70%. The ratio *cis*-isomer/ /*trans*-isomer, 1:1:5–2.

This route was used to prepare the following compounds. 1-Chloro-4-(5-(1,1-dimethylethoxy)-3-methyl-2-pentenyloxy)benzene (I), 1-chloro-4-(5-(1,1-dimethylethoxy)-3-methylpentyloxy)-benzene (II), 1-chloro-4-(3-(1,1-dimethylethoxy)-1-methylpropoxy)benzene (III), 1-chloro-4-(5-(2,2-dimethylpropoxy)-3-methyl-2-pentenyloxy)benzene (IV), 1-chloro-4-(5-(1,5-dimethyl-4-exenyloxy)-3-methyl-2-pentenyloxy)benzene (V), 1-chloro-4-(3-((2-methyl-2-butenyloxy)methyl)-2-pentenyloxy)benzene (VI), 1-chloro-4-(2-(2-methoxyethoxy)benzene (VII), ethyl 4-(5-(1,1-dimethylethoxy)-3-methyl-2-pentenyloxy)benzoate ** (VIII), ethyl 4-(3-(1,1-dimethylethoxy)-3-methyl-2-pentenyloxy)benzoate (IX), 4-(5-(1,1-dimethylethoxy)-3-methyl-2-pentenyloxy)propio-phenone (XI), 4-(5-(1,1-dimethylethoxy)-3-methylpentyloxy)propio-phenone (XII), 1-ethyl-4-(3-(1,1-dimethylethoxy)-1-methylpropoxy)benzene (XIII), and 4-(5-(1,1-dimethylethoxy)-3-methyl-2-pentenyloxy)-3-methyl-2-pentenyloxy)-1-methylpropoxy)benzene (XIV).

The IR spectra of compounds I-III and VIII exhibited absorption bands of the etherified phenolic oxygen atom (at about 1240 cm⁻¹), of the ethereal oxygen atom (at about 1080 and 1100 cm⁻¹) and of the *p*-substituted aromatic system (at about 1490, 1580, 1590, and 830 cm⁻¹).

** For the preparation of the corresponding methyl ester see ref.⁷.

^{*} The substance was not distilled and used directly in the next step.

The homogeneity of products and the *cis/trans* ratio was determined by gas chromatography on Cellite impregnated with 10% Apiezon L (in the case of compounds I-IV, VI, and XIII; at 200 or 225°C) and on Gas Chrom Q impregnated with 3% SE-30 (compounds V, VII-IX, XI, XII, and XIV; at 150-180°C).

N,N-Diethylamide of 4-(5-(1,1-Dimethylethoxy)-3-methyl-2-pentenyloxy) benzoic Acid (X)

The ethyl ester VIII $(1 \cdot 0 \text{ g})$ was saponified by refluxing for 1 h with 2% ethanolic sodium hydroxide (15 ml) and the mixture processed as usual to afford 0.8 g of the free acid. A solution of this acid (0.8 g), pyridine (2.5 ml), and benzene (10 ml) was treated with thionyl chloride (0.5 ml), the whole kept at room temperature for 2 h, diluted with benzene (10 ml), and treated dropwise with diethylamine (3 ml). After 2 h at room temperature, the mixture was worked up as usual and the crude amide chromatographed on silica gel (30 parts by weight) with the use of light petroleum-acetone (1 : 9) mixture as eluant. Yield, 0.6 g of the amide X.

Elemental analyses were performed in the Analytical Department of this Institute by Mrs V. Rusová, Mrs E. Šipová, Mrs Y. Černá, and Mr V. Štěrba under the direction of Dr J. Horáček. The IR spectra were measured by Mr P. Formánek and interpreted by Dr J. Smolíková. The technical assistance was provided by Miss D. Stiborková.

REFERENCES

- 1. Arnold Z., Kahovcová J., Pánková M., Svoboda M., Tichý M., Šorm F.: This Journal 38, 261 (1973).
- 2. Kahovcová J., Arnold Z., Šorm F.: This Journal 38, 765 (1973).
- 3. Jarolím V., Sláma K., Sehnal F., Šorm F.: Czech. Appl. PV 4607-73 (1973).
- 4. Jarolím V., Šorm F.: This Journal 39, 596 (1974).
- 5. Jarolím V., Šorm F.: This Journal, in press.
- 6. Jarolím V., Šorm F.: This Journal, in press.
- 7. Schelling H. P., Schaub F.: Ger. Offen. 2 161 150; Chem. Abstr. 77, 101 563 (1972).

Translated by J. Pliml.